This commit is contained in:
fofolee
2019-04-28 19:00:34 +08:00
parent a895309fba
commit f782158fb7
4705 changed files with 471929 additions and 471947 deletions

View File

@@ -1,80 +1,80 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<title>返回训练期间使用的候选数量</title>
</head>
<body class="docs"><div id="layout">
<div id="layout-content"><div id="function.fann-get-cascade-num-candidates" class="refentry">
<div class="refnamediv">
<h1 class="refname">fann_get_cascade_num_candidates</h1>
<p class="verinfo">(PECL fann &gt;= 1.0.0)</p><p class="refpurpose"><span class="refname">fann_get_cascade_num_candidates</span> &mdash; <span class="dc-title">返回训练期间使用的候选数量</span></p>
</div>
<div class="refsect1 description" id="refsect1-function.fann-get-cascade-num-candidates-description">
<h3 class="title">说明</h3>
<div class="methodsynopsis dc-description">
<span class="methodname"><strong>fann_get_cascade_num_candidates</strong></span>
( <span class="methodparam"><span class="type">resource</span> <code class="parameter">$ann</code></span>
) : <span class="type">int</span></div>
<p class="para rdfs-comment">
返回训练期间使用的候选数量 (
<span class="function"><a href="fann_get_cascade_activation_functions_count.html" class="function">fann_get_cascade_activation_functions_count()</a></span>,
<span class="function"><a href="fann_get_cascade_activation_steepnesses_count.html" class="function">fann_get_cascade_activation_steepnesses_count()</a></span>
<span class="function"><a href="fann_get_cascade_num_candidate_groups.html" class="function">fann_get_cascade_num_candidate_groups()</a></span>)的和。
</p>
<p class="para">
实际的候选数是由 <span class="function"><a href="fann_get_cascade_activation_functions.html" class="function">fann_get_cascade_activation_functions()</a></span>
<span class="function"><a href="fann_get_cascade_activation_steepnesses.html" class="function">fann_get_cascade_activation_steepnesses()</a></span> 数组定义的。 这些数组定义的激活功能和激活的陡度用于候选神经元。如果在激活函数数组中有两个激活函数并且陡度数组中有三个陡度则将会有2x3=6个不同的候选神经元被训练。 这6个不同的候选神经元将会被复制到几个候选组中这些候选组不同之处在于他们的初始权重。如果组的数量设为2则候选神经元的数量为2x3x2=12.候选组的数量是有 <span class="function"><a href="fann_set_cascade_num_candidate_groups.html" class="function">fann_set_cascade_num_candidate_groups()</a></span> 函数定义的。
</p>
<p class="para">
默认的候选神经元数量为 6x4x2 = 48
</p>
</div>
<div class="refsect1 parameters" id="refsect1-function.fann-get-cascade-num-candidates-parameters">
<h3 class="title">参数</h3>
<dl>
<dt>
<code class="parameter">ann</code></dt>
<dd>
<p class="para">Neural network <span class="type"><a href="language.types.resource.html" class="type resource">resource</a></span>.</p>
</dd>
</dl>
</div>
<div class="refsect1 returnvalues" id="refsect1-function.fann-get-cascade-num-candidates-returnvalues">
<h3 class="title">返回值</h3>
<p class="para">
成功,返回训练期间候选神经元的数量,错误则返回 <strong><code>FALSE</code></strong> .
</p>
</div>
<div class="refsect1 seealso" id="refsect1-function.fann-get-cascade-num-candidates-seealso">
<h3 class="title">参见</h3>
<p class="para">
<ul class="simplelist">
<li class="member"><span class="function"><a href="fann_get_cascade_activation_functions.html" class="function" rel="rdfs-seeAlso">fann_get_cascade_activation_functions()</a> - 返回级联激活函数</span></li>
<li class="member"><span class="function"><a href="fann_get_cascade_activation_functions_count.html" class="function" rel="rdfs-seeAlso">fann_get_cascade_activation_functions_count()</a> - 返回级联激活函数的数量</span></li>
<li class="member"><span class="function"><a href="fann_get_cascade_activation_steepnesses.html" class="function" rel="rdfs-seeAlso">fann_get_cascade_activation_steepnesses()</a> - 返回级联激活陡度</span></li>
<li class="member"><span class="function"><a href="fann_get_cascade_activation_steepnesses_count.html" class="function" rel="rdfs-seeAlso">fann_get_cascade_activation_steepnesses_count()</a> - 激活陡度的数量</span></li>
<li class="member"><span class="function"><a href="fann_get_cascade_num_candidate_groups.html" class="function" rel="rdfs-seeAlso">fann_get_cascade_num_candidate_groups()</a> - 返回候选组的数量</span></li>
</ul>
</p>
</div>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<title>返回训练期间使用的候选数量</title>
</head>
<body class="docs"><div id="layout">
<div id="layout-content"><div id="function.fann-get-cascade-num-candidates" class="refentry">
<div class="refnamediv">
<h1 class="refname">fann_get_cascade_num_candidates</h1>
<p class="verinfo">(PECL fann &gt;= 1.0.0)</p><p class="refpurpose"><span class="refname">fann_get_cascade_num_candidates</span> &mdash; <span class="dc-title">返回训练期间使用的候选数量</span></p>
</div>
<div class="refsect1 description" id="refsect1-function.fann-get-cascade-num-candidates-description">
<h3 class="title">说明</h3>
<div class="methodsynopsis dc-description">
<span class="methodname"><strong>fann_get_cascade_num_candidates</strong></span>
( <span class="methodparam"><span class="type">resource</span> <code class="parameter">$ann</code></span>
) : <span class="type">int</span></div>
<p class="para rdfs-comment">
返回训练期间使用的候选数量 (
<span class="function"><a href="fann_get_cascade_activation_functions_count.html" class="function">fann_get_cascade_activation_functions_count()</a></span>,
<span class="function"><a href="fann_get_cascade_activation_steepnesses_count.html" class="function">fann_get_cascade_activation_steepnesses_count()</a></span>
<span class="function"><a href="fann_get_cascade_num_candidate_groups.html" class="function">fann_get_cascade_num_candidate_groups()</a></span>)的和。
</p>
<p class="para">
实际的候选数是由 <span class="function"><a href="fann_get_cascade_activation_functions.html" class="function">fann_get_cascade_activation_functions()</a></span>
<span class="function"><a href="fann_get_cascade_activation_steepnesses.html" class="function">fann_get_cascade_activation_steepnesses()</a></span> 数组定义的。 这些数组定义的激活功能和激活的陡度用于候选神经元。如果在激活函数数组中有两个激活函数并且陡度数组中有三个陡度则将会有2x3=6个不同的候选神经元被训练。 这6个不同的候选神经元将会被复制到几个候选组中这些候选组不同之处在于他们的初始权重。如果组的数量设为2则候选神经元的数量为2x3x2=12.候选组的数量是有 <span class="function"><a href="fann_set_cascade_num_candidate_groups.html" class="function">fann_set_cascade_num_candidate_groups()</a></span> 函数定义的。
</p>
<p class="para">
默认的候选神经元数量为 6x4x2 = 48
</p>
</div>
<div class="refsect1 parameters" id="refsect1-function.fann-get-cascade-num-candidates-parameters">
<h3 class="title">参数</h3>
<dl>
<dt>
<code class="parameter">ann</code></dt>
<dd>
<p class="para">Neural network <span class="type"><a href="language.types.resource.html" class="type resource">resource</a></span>.</p>
</dd>
</dl>
</div>
<div class="refsect1 returnvalues" id="refsect1-function.fann-get-cascade-num-candidates-returnvalues">
<h3 class="title">返回值</h3>
<p class="para">
成功,返回训练期间候选神经元的数量,错误则返回 <strong><code>FALSE</code></strong> .
</p>
</div>
<div class="refsect1 seealso" id="refsect1-function.fann-get-cascade-num-candidates-seealso">
<h3 class="title">参见</h3>
<p class="para">
<ul class="simplelist">
<li class="member"><span class="function"><a href="fann_get_cascade_activation_functions.html" class="function" rel="rdfs-seeAlso">fann_get_cascade_activation_functions()</a> - 返回级联激活函数</span></li>
<li class="member"><span class="function"><a href="fann_get_cascade_activation_functions_count.html" class="function" rel="rdfs-seeAlso">fann_get_cascade_activation_functions_count()</a> - 返回级联激活函数的数量</span></li>
<li class="member"><span class="function"><a href="fann_get_cascade_activation_steepnesses.html" class="function" rel="rdfs-seeAlso">fann_get_cascade_activation_steepnesses()</a> - 返回级联激活陡度</span></li>
<li class="member"><span class="function"><a href="fann_get_cascade_activation_steepnesses_count.html" class="function" rel="rdfs-seeAlso">fann_get_cascade_activation_steepnesses_count()</a> - 激活陡度的数量</span></li>
<li class="member"><span class="function"><a href="fann_get_cascade_num_candidate_groups.html" class="function" rel="rdfs-seeAlso">fann_get_cascade_num_candidate_groups()</a> - 返回候选组的数量</span></li>
</ul>
</p>
</div>
</div></div></div></body></html>