模拟操作添加屏幕找图(Mac)

This commit is contained in:
fofolee
2025-01-03 00:01:57 +08:00
parent 02c1574b5b
commit ef4726049e
14 changed files with 780 additions and 25 deletions

View File

@@ -0,0 +1,238 @@
const { nativeImage } = require("electron");
const { captureScreen } = require("./screenCapture");
// 将颜色值映射到8个区间
function mapColorValue(val) {
if (val > 223) return 7; // [224 ~ 255]
if (val > 191) return 6; // [192 ~ 223]
if (val > 159) return 5; // [160 ~ 191]
if (val > 127) return 4; // [128 ~ 159]
if (val > 95) return 3; // [96 ~ 127]
if (val > 63) return 2; // [64 ~ 95]
if (val > 31) return 1; // [32 ~ 63]
return 0; // [0 ~ 31]
}
// 计算图像特征向量
function calculateFeatureVector(
buffer,
width,
height,
startX = 0,
startY = 0,
w = width,
h = height
) {
// 8^4 = 4096 维向量表示RGBA各8个区间的组合
const vector = new Array(8 * 8 * 8 * 8).fill(0);
for (let y = startY; y < startY + h; y++) {
for (let x = startX; x < startX + w; x++) {
const idx = (y * width + x) * 4;
// 计算四个通道的量化值
const r = mapColorValue(buffer[idx]);
const g = mapColorValue(buffer[idx + 1]);
const b = mapColorValue(buffer[idx + 2]);
const a = mapColorValue(buffer[idx + 3]);
// 计算在向量中的位置
const vectorIdx = r * 512 + g * 64 + b * 8 + a;
vector[vectorIdx]++;
}
}
return vector;
}
// 计算余弦相似度
function calculateCosineSimilarity(v1, v2) {
let dotProduct = 0;
let norm1 = 0;
let norm2 = 0;
for (let i = 0; i < v1.length; i++) {
dotProduct += v1[i] * v2[i];
norm1 += v1[i] * v1[i];
norm2 += v2[i] * v2[i];
}
return dotProduct / (Math.sqrt(norm1) * Math.sqrt(norm2));
}
// 获取显示器缩放比例
function getDisplayScale() {
if (process.platform === "darwin") {
// 在 macOS 上,通过比较实际分辨率和报告的分辨率来计算缩放比例
const primaryDisplay = utools.getPrimaryDisplay();
const { scaleFactor } = primaryDisplay;
return scaleFactor;
}
return 1;
}
// 在屏幕上查找图片
async function findImage(targetImageData, options = {}) {
try {
// 获取屏幕截图
const screenDataUrl = await captureScreen();
if (!screenDataUrl) return null;
// 获取显示器缩放比例
const scale = getDisplayScale();
// 读取屏幕截图
const screenImage = nativeImage.createFromDataURL(screenDataUrl);
const screenBuffer = screenImage.toBitmap();
const { width: actualWidth, height: actualHeight } = screenImage.getSize();
// 计算缩放后的实际尺寸
const screenWidth = Math.round(actualWidth / scale);
const screenHeight = Math.round(actualHeight / scale);
// 从 base64 字符串创建目标图片
const targetImage = nativeImage.createFromDataURL(targetImageData);
const targetBuffer = targetImage.toBitmap();
const { width: targetWidth, height: targetHeight } = targetImage.getSize();
// 计算目标图片的特征向量
const targetVector = calculateFeatureVector(
targetBuffer,
targetWidth,
targetHeight
);
// 设置匹配阈值
const threshold = options.threshold || 0.9;
let bestMatch = null;
let bestSimilarity = 0;
// 使用滑动窗口搜索
const stepSize = Math.round(8 * scale); // 根据缩放比例调整步长
for (let y = 0; y <= actualHeight - targetHeight; y += stepSize) {
for (let x = 0; x <= actualWidth - targetWidth; x += stepSize) {
// 计算当前区域的特征向量
const regionVector = calculateFeatureVector(
screenBuffer,
actualWidth,
actualHeight,
x,
y,
targetWidth,
targetHeight
);
// 计算相似度
const similarity = calculateCosineSimilarity(
targetVector,
regionVector
);
// 更新最佳匹配
if (similarity > bestSimilarity) {
bestSimilarity = similarity;
bestMatch = { x: Math.round(x / scale), y: Math.round(y / scale) };
// 如果相似度已经很高,进行精确搜索
if (similarity >= threshold) {
// 在周围进行精确搜索,注意搜索范围也要考虑缩放
const searchRange = Math.round(4 * scale);
for (let dy = -searchRange; dy <= searchRange; dy++) {
for (let dx = -searchRange; dx <= searchRange; dx++) {
const newX = x + dx;
const newY = y + dy;
if (
newX < 0 ||
newY < 0 ||
newX > actualWidth - targetWidth ||
newY > actualHeight - targetHeight
) {
continue;
}
const preciseVector = calculateFeatureVector(
screenBuffer,
actualWidth,
actualHeight,
newX,
newY,
targetWidth,
targetHeight
);
const preciseSimilarity = calculateCosineSimilarity(
targetVector,
preciseVector
);
if (preciseSimilarity > bestSimilarity) {
bestSimilarity = preciseSimilarity;
bestMatch = {
x: Math.round(newX / scale),
y: Math.round(newY / scale),
};
}
}
}
}
}
// 如果找到足够好的匹配,提前返回
if (bestSimilarity >= threshold) {
const position = {
x: bestMatch.x,
y: bestMatch.y,
width: Math.round(targetWidth / scale),
height: Math.round(targetHeight / scale),
confidence: bestSimilarity,
};
clickImage(position, options.mouseAction);
return position;
}
}
}
// 如果没有找到足够好的匹配,但有最佳匹配且相似度不太低,也返回
if (bestMatch && bestSimilarity > threshold * 0.8) {
const position = {
x: bestMatch.x,
y: bestMatch.y,
width: Math.round(targetWidth / scale),
height: Math.round(targetHeight / scale),
confidence: bestSimilarity,
};
clickImage(position, options.mouseAction);
return position;
}
return null;
} catch (error) {
console.error("查找图片失败:", error);
return null;
}
}
const clickImage = (position, mouseAction) => {
// 计算中心点
const centerX = position.x + position.width / 2;
const centerY = position.y + position.height / 2;
// 根据配置执行鼠标动作
switch (mouseAction) {
case "none":
break;
case "click":
window.utools.simulateMouseClick(centerX, centerY);
break;
case "dblclick":
window.utools.simulateMouseDoubleClick(centerX, centerY);
break;
case "rightclick":
window.utools.simulateMouseRightClick(centerX, centerY);
break;
}
};
module.exports = { findImage };